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Abstract
The spin Hall effect does not generally result in a transverse voltage. We predict that in systems
with inhomogeneous electron density in the direction perpendicular to main current flow, the
spin Hall effect is instead accompanied by a transverse voltage. We find that, unlike the
ordinary Hall effect, this voltage is quadratic in the longitudinal electric field for a wide range of
parameters accessible experimentally. We also predict spin accumulation in the bulk and sharp
peaks of spin Hall induced charge accumulation near the edges. Our results can be readily
tested experimentally, and would allow the electrical measurement of the spin Hall effect in
non-magnetic systems and without injection of spin-polarized electrons.

(Some figures in this article are in colour only in the electronic version)

There is currently much interest in the spin Hall effect, which
allows the polarization of electron spins without magnetic
fields and/or magnetic materials [1–13, 15, 16]. In the spin
Hall effect, electrically induced spin polarization accumulates
near the edges of a channel and is zero in its central region.
This effect is caused by deflection of carriers moving along
an applied electric field by extrinsic [3] and/or intrinsic [5]
mechanisms. In a non-magnetic homogeneous system, spin
accumulation is not accompanied by a charge voltage because
two spin Hall currents (due to spin-up and spin-down electrons)
cancel each other [1]. The absence of transverse voltage leads
to difficulties in probing the spin Hall effect: measuring a
charge accumulation is much easier than measuring a spin
accumulation. Recently, the spin Hall effect has been observed
both optically [13–15] and electrically [16]. In the latter case,
a charge accumulation has been created through injection of
spin-polarized electrons into the sample [16].

In the present paper, we predict that in a system with
an inhomogeneous electron density profile in the direction
perpendicular to the direction of main current flow, the
extrinsic spin Hall effect results in both spin and charge
accumulations. The pattern of charge accumulation is
determined by the interplay of two mechanisms. The first
mechanism of charge accumulation is based on the dependence
of spin-up and spin-down currents on local spin-up and spin-
down densities. Spin currents, outgoing from regions with
higher densities, are not fully compensated by incoming
currents, therefore, a charge accumulation appears. This
mechanism is primarily responsible for the non-zero Hall

voltage. The second mechanism of charge accumulation is
related to scattering of spin currents on sample boundaries
which act like obstacles. Like in the case of Landauer
resistivity dipoles [17], this scattering leads to formation
of local charge accumulation, which is also expected in
traditionally studied spin Hall systems. In addition, we show
that in systems with inhomogeneous electron density the spin
accumulation appears not only near the sample boundaries,
but also in the bulk. Our proposal does not involve any
use of magnetic materials and fields, therefore, the spin Hall
effect can be measured electrically in completely non-magnetic
systems and without injection of spin-polarized electrons.

To illustrate this effect, let us begin by considering a
system having a step profile of electron density, as shown
in figure 1. There are several possible ways to fabricate
such a system including density depletion by an electrode,
inhomogeneous doping [18], or variation of the sample height.
What is important to us is that the perpendicular (in y direction)
spin currents are different in the regions with different electron
density. Then, if we consider currents passing through the
boundary separating regions with different charge densities (n1

and n2), it is clear that the spin current from the region with
higher electron density has a larger magnitude than the current
in the reverse direction. The difference in currents implies
charge transfer through the boundary and formation of a dipole
layer.

Let us now provide a quantitative analysis of this effect.
We employ a two-component drift-diffusion model [19, 20],
and in order to find a self-consistent solution, we supplement
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Figure 1. Spin Hall effect in a system with a step profile of the
electron density in the y direction, n1 > n2. Spin currents through
the boundary between n1 and n2 do not cancel each other, resulting in
a transverse voltage.

the drift-diffusion equations with the Poisson equation. In our
drift-diffusion calculation scheme, the inhomogeneous charge
density profile n(y) is found self-consistently for an assigned
positive background density profile N(y) (such as the one
in figure 1), which, as discussed above, can be obtained in
different ways. Assuming homogeneous charge and current
densities in x direction and homogeneous x-component of the
electric field in both x and y directions, we can write a set of
equations including only y and t dependences:

e
∂n↑(↓)

∂ t
= div jy,↑(↓) + e

2τsf

(
n↓(↑) − n↑(↓)

)
, (1)

jy,↑(↓) = σ↑(↓)Ey + eD∇n↑(↓) ± γ Ix,↑(↓), (2)

and
div Ey = e

εε0
(N(y) − n) , (3)

where −e is the electron charge, n↑(↓) is the density of spin-
up (spin-down) electrons, jy,↑(↓) is the current density, τsf

is the spin relaxation time, σ↑(↓) = en↑(↓)μ is the spin-up
(spin-down) conductivity, μ is the mobility, D is the diffusion
coefficient, ε is the permittivity of the bulk, and γ is the
parameter describing deflection of spin-up (+) and spin-down
(−) electrons. The current Ix,↑(↓) in x-direction is coupled
to the homogeneous electric field E0 in the same direction
as Ix,↑(↓) = en↑(↓)μE0. The last term in equation (2) is
responsible for the spin Hall effect.

Equation (1) is the continuity relation that takes into
account spin relaxation, equation (2) is the expression for
the current in y direction which includes drift, diffusion and
spin Hall effect components, and equation (3) is the Poisson
equation. It is assumed that D, μ, τsf and γ are equal for spin-
up and spin-down electrons1. In our model, as it follows from
equation (2), the spin Hall correction to spin-up (spin-down)
current (the last term in equation (2)) is simply proportional to
the local spin-up (spin-down) density. All information about
microscopic mechanisms for the spin Hall effect is therefore
lumped in the parameter γ .

Combining equations (1) and (2) for different spin
components we can get the following equations for electron
density n = n↑ +n↓ and spin density imbalance P = n↑ −n↓:

∂n

∂ t
= ∂

∂y

[
μnEy + D

∂n

∂y
+ γ PμE0

]
(4)

1 This is a good approximation for the range of parameters considered in this
work.

and

∂ P

∂ t
= ∂

∂y

[
μP Ey + D

∂ P

∂y
+ γ nμE0

]
− P

τsf
. (5)

Analytical solution. Before solving equations (3)–(5)
numerically, let us try to find analytical solutions in specific
cases. This will help us in the discussion of the numerical
results. An analytical steady-state solution of these equations
can indeed be found for the case of exponential density profile
in a system which is infinite in the y direction. Our numerical
calculations indicate that in real systems, finite in y-direction,
this analytical solution is realizable in the central part of the
sample.

The structure of equations (3)–(5) allows us to select a
solution in the form

n = N(y) = Aeαy, (6)

P = Ceαy, (7)

Ey = const, (8)

where A, C and α are constants (A and α are assigned). This
solution corresponds to constant spin polarization p = P/n.
Substituting equations (6)–(8) into equations (4) and (5) (note
that the Poisson equation (3) is automatically satisfied) we
obtain

μEy A + DαA + γμE0C = 0, (9)

μEyαC + Dα2C + γμE0αA − C

τsf
= 0. (10)

From these equations, eliminating Ey , we find

C = −1 ±
√

1 + (2τsfγμE0α)2

2τsfγμE0α
A. (11)

The physical solution corresponds to the + sign in
equation (11). It can be easily verified that the solution given
by equations (6)–(8), (11) corresponds to jy = 0. Substituting
equation (11) into equation (9) we finally get

Ey = − D

μ
α − −1 +

√
1 + (2τsfγμE0α)2

2τsfμα
. (12)

The first term on the RHS of equation (12) is the built-in
electric field countering the gradient of electron density. The
second term on the RHS of equation (12) is the electric field
needed to compensate the transverse current arising due to the
spin Hall effect. If we now assume that the sample has a finite
(but large) width L, then, Ey can be interpreted as due to charge
accumulation near the edges, as in the ordinary Hall effect. The
measurable transverse voltage is associated with the second
term on the RHS of equation (12) and can be approximately
written as

VH � L
−1 +

√
1 + (2τsfγμE0α)2

2τsfμα

≈
{

Lτsfμαγ 2 E2
0 , 2τsfγμE0α � 1

Lγ E0, 2τsfγμE0α � 1.
(13)
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From this equation we see that the transverse voltage is
quadratic in E0 for small values of the parameter 2τsfγμE0α,
and linear in E0 for large values of this parameter. In
fact, the quadratic dependence is quite unusual, since in
the ordinary Hall effect the Hall voltage is linear in the
longitudinal current. The reason for this unusual dependence
can be understood as follows. The charge current in the y
direction, determined by the difference of spin-up and spin-
down currents, has a component (related to the last term in
equation (2)) proportional to the spin density imbalance P
times γ E0. At small values of 2τsfγμE0α, the spin density
imbalance is proportional to γ E0 itself. Therefore, the charge
current and transverse voltage are quadratic in E0. At large
values of 2τsfγμE0α, the spin density imbalance saturates
and the current dependence on E0 becomes linear. Another
difference with respect to the ordinary Hall effect is that the
polarity of the transverse voltage in the spin Hall effect is fixed
by the geometry of the structure, and does not depend on the
direction of the longitudinal current.

Let us now estimate the magnitude of 2τsfγμE0α. Taking
parameters related to experiments on GaAs (τsf = 10 ns,
γ = 10−3 [6], μ = 8500 cm2 V−1 s−1, E0 = 100 V cm−1,
α = 2/L, L = 100 μm), we find 2τsfγμE0α = 3.4 × 10−3.
Therefore, in experiments with GaAs, most likely, a quadratic
voltage dependence on the longitudinal electric field can be
observed.

Numerical solution. Equations (3)–(5) can be solved
numerically for any reasonable form of N(y). We choose for
their simplicity (and possibility to be realized in practice) a step
profile and an exponential profile. We solve these equations
iteratively, starting with the electron density n(y) close to N(y)

and P(y) close to zero and recalculating Ey(y) at each time
step2. Once the steady-state solution is obtained, the transverse
voltage as a function of E0 is calculated as a change of the
electrostatic potential across the sample.

Figure 2 shows distributions of the charge density and spin
density imbalance in systems with a step (panel (a) of figure 2)
and exponential (panel (b) of figure 2) background densities.
The values of parameters used for these particular simulations
were selected to be close to experimental conditions reported
in [13]. However, we have tested the robustness of our
predictions by solving equations (3)–(5) for different values
of parameters, and found that the predicted transverse voltage
should be measurable under a wide range of experimental
parameters. Quite generally, the self-consistent charge density
n(y) is very close to the background density N(y). Small
deviations of n(y) from N(y) can be observed in regions with
strong gradients of N(y). In particular, we can notice that the
step profile of electron density in figure 2(a) is smoothed out.
Such a charge redistribution is related to the diffusion term in
equation (4). The charge diffusion leads to the formation of a
built-in electric field that equilibrates the charge diffusion.

We also find that the induced spin density imbalance P
in systems with inhomogeneous electron densities shows some
new features, in addition to the well-known spin accumulation
near the edges. For instance, in figure 2(a), P has an additional

2 We have employed the Scharfetter–Gummel discretization scheme [21] to
solve both equations (4) and (5) numerically.

(a)

(b)

Figure 2. Distributions of the electron density n(y) and spin density
imbalance P(y) = n↑ − n↓ for step (a) and exponential (b)
background density profiles. The plots presented in the paper were
obtained using the parameter values μ = 8500 cm2 V−1 s−1,
D = 55 cm2 s−1, ε = 12.4, τsf = 10 ns, γ = 10−3,
E0 = 100 V cm−1 and the background density profiles:
(a) N = 1016(1 + θ(y − L/2)) cm−3 and
(b) N = 1016 exp(2y/L) cm−3, where θ(·) is the step function, and
L = 100 μm is the sample width.

peak around y = 50 μm. In figure 2(b), P is almost constant
in the central region of the sample. In both cases, the physics
of non-zero spin density imbalance is the same: the spin
current incoming from the right is stronger than the spin current
incoming from the left. We note that the integral spin density
imbalance is always zero.

At E0 = 0, the system is spin-unpolarized and there is no
transverse voltage. When the longitudinal current is switched
on, the electron charge redistributes, and the associated voltage
appears. The change of electron density due to the spin Hall
effect is presented in figure 3. The first interesting observation
is that there is a strong charge accumulation near the edges
followed by a charge depletion region. Another observation is
that the total electron density in the left region of the samples
(y < 50 μm) has increased and, correspondingly, the total
electron density in the right region has decreased. This change
of the electron distribution can be seen in figure 3. Therefore,
the left part of the samples is charged negatively and the right
part is charged positively, as schematically shown in figure 1.
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Figure 3. Variations in the transverse charge density induced by the
longitudinal current. Here, δn = n(E0 = 100 V cm−1) − n(E0 = 0).
The curve for the exponential profile has been shifted vertically by
3 × 1010 cm−3 for clarity. The dashed lines corresponding to δn = 0
are there to guide the eye.

The mechanism of formation of sharp peaks (of finite
amplitude) of charge accumulation near the edges is similar
to the mechanism of formation of Landauer resistivity
dipoles [17]. From the point of view of spin currents, the
sample edges act as obstacles which block the current flow,
and lead to charge accumulation. The adjacent regions with
the depleted electron density can be interpreted as screening
clouds. We stress that this Landauer-type dipoles of charge
accumulation are quite general for spin Hall systems, and
should thus be present also in traditionally studied structures
with a constant density profile.

We finally plot in figure 4 the change of the electrostatic
potential across the sample as a function of longitudinal
electric field. The voltage, for both density profiles, has
a dependence on E0 which is very close to the quadratic
dependence we have predicted analytically in equation (13)
for small values of 2τsfγμE0α. The fact that this quadratic
dependence appears also in the step profile, hints at a possible
‘general’ property of the transverse voltage in spin Hall
systems with inhomogeneous densities. We emphasize that
a transverse voltage should also appear in spin Hall systems
with a homogeneous electron density, but inhomogeneous γ .
This corresponds to the case in which the spin–orbit coupling
is dependent on space [22, 23]. We also note that the ordinary
potential scattering may contribute to the transverse voltage.
However, the spin Hall contribution to the transverse voltage
can be easily separated using its sensitivity to the in-plane
magnetic field (via the magnetic field sensitivity of τsf).

In conclusion, we have shown that a transverse voltage
would appear in spin Hall systems with inhomogeneous
electron density in the direction perpendicular to main current
flow. The striking result is that this voltage is generally
quadratic in the longitudinal electric field, unlike the ordinary
Hall voltage which is linear in the same field. These results
can be easily verified experimentally, and would simplify
tremendously the measurement of the spin Hall effect by

Figure 4. Transverse voltage as a function of the longitudinal electric
field E0.

allowing an electrical measurement of the latter in non-
magnetic systems, and without injection of spin-polarized
electrons.
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